Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
1.
Plant Phenomics ; 6: 0157, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38524737

RESUMO

Automation of plant phenotyping using data from high-dimensional imaging sensors is on the forefront of agricultural research for its potential to improve seasonal yield by monitoring crop health and accelerating breeding programs. A common challenge when capturing images in the field relates to the spectral reflection of sunlight (glare) from crop leaves that, at certain solar incidences and sensor viewing angles, presents unwanted signals. The research presented here involves the convergence of 2 parallel projects to develop a facile algorithm that can use polarization data to decouple light reflected from the surface of the leaves and light scattered from the leaf's tissue. The first project is a mast-mounted hyperspectral imaging polarimeter (HIP) that can image a maize field across multiple diurnal cycles throughout a growing season. The second project is a multistatic fiber-based Mueller matrix bidirectional reflectance distribution function (mmBRDF) instrument which measures the polarized light-scattering behavior of individual maize leaves. The mmBRDF data was fitted to an existing model, which outputs parameters that were used to run simulations. The simulated data were then used to train a shallow neural network which works by comparing unpolarized 2-band vegetation index (VI) with linearly polarized data from the low-reflectivity bands of the VI. Using GNDVI and red-edge reflection ratio we saw an improvement of an order of magnitude or more in the mean error (ϵ) and a reduction spanning 1.5 to 2.7 in their standard deviation (ϵσ) after applying the correction network on the HIP sensor data.

2.
Mol Plant Pathol ; 25(3): e13445, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38528659

RESUMO

The pattern-triggered immunity (PTI) response is triggered at the plant cell surface by the recognition of microbe-derived molecules known as microbe- or pathogen-associated molecular patterns or molecules derived from compromised host cells called damage-associated molecular patterns. Membrane-localized receptor proteins, known as pattern recognition receptors, are responsible for this recognition. Although much of the machinery of PTI is conserved, natural variation for the PTI response exists within and across species with respect to the components responsible for pattern recognition, activation of the response, and the strength of the response induced. This review describes what is known about this variation. We discuss how variation in the PTI response can be measured and how this knowledge might be utilized in the control of plant disease and in developing plant varieties with enhanced disease resistance.


Assuntos
Reconhecimento da Imunidade Inata , Imunidade Vegetal , Imunidade Vegetal/fisiologia , Plantas , Resistência à Doença , Doenças das Plantas , Receptores de Reconhecimento de Padrão
3.
Nat Genet ; 56(2): 315-326, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38238629

RESUMO

Gray leaf spot (GLS), caused by the fungal pathogens Cercospora zeae-maydis and Cercospora zeina, is a major foliar disease of maize worldwide (Zea mays L.). Here we demonstrate that ZmWAKL encoding cell-wall-associated receptor kinase-like protein is the causative gene at the major quantitative disease resistance locus against GLS. The ZmWAKLY protein, encoded by the resistance allele, can self-associate and interact with a leucine-rich repeat immune-related kinase ZmWIK on the plasma membrane. The ZmWAKLY/ZmWIK receptor complex interacts with and phosphorylates the receptor-like cytoplasmic kinase (RLCK) ZmBLK1, which in turn phosphorylates its downstream NADPH oxidase ZmRBOH4. Upon pathogen infection, ZmWAKLY phosphorylation activity is transiently increased, initiating immune signaling from ZmWAKLY, ZmWIK, ZmBLK1 to ZmRBOH4, ultimately triggering a reactive oxygen species burst. Our study thus uncovers the role of the maize ZmWAKL-ZmWIK-ZmBLK1-ZmRBOH4 receptor/signaling/executor module in perceiving the pathogen invasion, transducing immune signals, activating defense responses and conferring increased resistance to GLS.


Assuntos
Locos de Características Quantitativas , Zea mays , Zea mays/genética , Zea mays/microbiologia , Doenças das Plantas/microbiologia , Resistência à Doença/genética
4.
G3 (Bethesda) ; 14(2)2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38051956

RESUMO

Foliar diseases of maize are among the most important diseases of maize worldwide. This study focused on 4 major foliar diseases of maize: Goss's wilt, gray leaf spot, northern corn leaf blight, and southern corn leaf blight. QTL mapping for resistance to Goss's wilt was conducted in 4 disease resistance introgression line populations with Oh7B as the common recurrent parent and Ki3, NC262, NC304, and NC344 as recurrent donor parents. Mapping results for Goss's wilt resistance were combined with previous studies for gray leaf spot, northern corn leaf blight, and southern corn leaf blight resistance in the same 4 populations. We conducted (1) individual linkage mapping analysis to identify QTL specific to each disease and population; (2) Mahalanobis distance analysis to identify putative multiple disease resistance regions for each population; and 3) joint linkage mapping to identify QTL across the 4 populations for each disease. We identified 3 lines that were resistant to all 4 diseases. We mapped 13 Goss's wilt QTLs in the individual populations and an additional 6 using joint linkage mapping. All Goss's wilt QTL had small effects, confirming that resistance to Goss's wilt is highly quantitative. We report several potentially important chromosomal bins associated with multiple disease resistance including 1.02, 1.03, 3.04, 4.06, 4.08, and 9.03. Together, these findings indicate that disease QTL distribution is not random and that there are locations in the genome that confer resistance to multiple diseases. Furthermore, resistance to bacterial and fungal diseases is not entirely distinct, and we identified lines resistant to both fungi and bacteria, as well as loci that confer resistance to both bacterial and fungal diseases.


Assuntos
Ascomicetos , Resistência à Doença , Micoses , Resistência à Doença/genética , Zea mays/genética , Zea mays/microbiologia , Mapeamento Cromossômico , Doenças das Plantas/genética , Doenças das Plantas/microbiologia
6.
Brief Bioinform ; 24(6)2023 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-37824740

RESUMO

Metagenomics is a powerful tool for understanding organismal interactions; however, classification, profiling and detection of interactions at the strain level remain challenging. We present an automated pipeline, quantitative metagenomic alignment and taxonomic exact matching (Qmatey), that performs a fast exact matching-based alignment and integration of taxonomic binning and profiling. It interrogates large databases without using metagenome-assembled genomes, curated pan-genes or k-mer spectra that limit resolution. Qmatey minimizes misclassification and maintains strain level resolution by using only diagnostic reads as shown in the analysis of amplicon, quantitative reduced representation and shotgun sequencing datasets. Using Qmatey to analyze shotgun data from a synthetic community with 35% of the 26 strains at low abundance (0.01-0.06%), we revealed a remarkable 85-96% strain recall and 92-100% species recall while maintaining 100% precision. Benchmarking revealed that the highly ranked Kraken2 and KrakenUniq tools identified 2-4 more taxa (92-100% recall) than Qmatey but produced 315-1752 false positive taxa and high penalty on precision (1-8%). The speed, accuracy and precision of the Qmatey pipeline positions it as a valuable tool for broad-spectrum profiling and for uncovering biologically relevant interactions.


Assuntos
Metagenoma , Metagenômica , Análise de Sequência de DNA , Bases de Dados Factuais
7.
G3 (Bethesda) ; 13(10)2023 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-37523773

RESUMO

In maize, the community-standard transformant line B104 is a useful model for dissecting features of transfer DNA (T-DNA) integration due to its compatibility with Agrobacterium-mediated transformation and the availability of its genome sequence. Knowledge of transgene integration sites permits the analysis of the genomic environment that governs the strength of gene expression and phenotypic effects due to the disruption of an endogenous gene or regulatory element. In this study, we optimized a fusion primer and nested integrated PCR (FPNI-PCR) technique for T-DNA detection in maize to characterize the integration sites of 89 T-DNA insertions in 81 transformant lines. T-DNA insertions preferentially occurred in gene-rich regions and regions distant from centromeres. Integration junctions with and without microhomologous sequences as well as junctions with de novo sequences were detected. Sequence analysis of integration junctions indicated that T-DNA was incorporated via the error-prone repair pathways of nonhomologous (predominantly) and microhomology-mediated (minor) end-joining. This report provides a quantitative assessment of Agrobacterium-mediated T-DNA integration in maize with respect to insertion site features, the genomic distribution of T-DNA incorporation, and the mechanisms of integration. It also demonstrates the utility of the FPNI-PCR technique, which can be adapted to any species of interest.


Assuntos
Agrobacterium , Zea mays , Agrobacterium/genética , Zea mays/genética , Transformação Genética , DNA Bacteriano/genética , DNA de Plantas/genética , Plantas Geneticamente Modificadas/genética
8.
Appl Opt ; 62(8): 2078-2091, 2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-37133096

RESUMO

Many correlations exist between spectral reflectance or transmission with various phenotypic responses from plants. Of interest to us are metabolic characteristics, namely, how the various polarimetric components of plants may correlate to underlying environmental, metabolic, and genotypic differences among different varieties within a given species, as conducted during large field experimental trials. In this paper, we overview a portable Mueller matrix imaging spectropolarimeter, optimized for field use, by combining a temporal and spatial modulation scheme. Key aspects of the design include minimizing the measurement time while maximizing the signal-to-noise ratio by mitigating systematic error. This was achieved while maintaining an imaging capability across multiple measurement wavelengths, spanning the blue to near-infrared spectral region (405-730 nm). To this end, we present our optimization procedure, simulations, and calibration methods. Validation results, which were taken in redundant and non-redundant measurement configurations, indicated that the polarimeter provides average absolute errors of (5.3±2.2)×10-3 and (7.1±3.1)×10-3, respectively. Finally, we provide preliminary field data (depolarization, retardance, and diattenuation) to establish baselines of barren and non-barren Zea maize hybrids (G90 variety), as captured from various leaf and canopy positions during our summer 2022 field experiments. Results indicate that subtle variations in retardance and diattenuation versus leaf canopy position may be present before they are clearly visible in the spectral transmission.


Assuntos
Imagem Multimodal , Folhas de Planta , Análise Espectral , Zea mays
10.
New Phytol ; 238(4): 1546-1561, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36772855

RESUMO

Blumeria graminis f. sp. tritici (Bgt) is a globally important fungal pathogen of wheat that can rapidly evolve to defeat wheat powdery mildew (Pm) resistance genes. Despite periodic regional deployment of the Pm1a resistance gene in US wheat production, Bgt strains that overcome Pm1a have been notably nonpersistent in the United States, while on other continents, they are more widely established. A genome-wide association study (GWAS) was conducted to map sequence variants associated with Pm1a virulence in 216 Bgt isolates from six countries, including the United States. A virulence variant apparently unique to Bgt isolates from the United States was detected in the previously mapped gene AvrPm1a (BgtE-5612) on Bgt chromosome 6; an in vitro growth assay suggested no fitness reduction associated with this variant. A gene on Bgt chromosome 8, Bgt-51526, was shown to function as a second determinant of Pm1a virulence, and despite < 30% amino acid identity, BGT-51526 and BGTE-5612 were predicted to share > 85% of their secondary structure. A co-expression study in Nicotiana benthamiana showed that BGTE-5612 and BGT-51526 each produce a PM1A-dependent hypersensitive response. More than one member of a B. graminis effector family can be recognized by a single wheat immune receptor, and a two-gene model is necessary to explain virulence to Pm1a.


Assuntos
Estudo de Associação Genômica Ampla , Triticum , Triticum/microbiologia , Virulência/genética , Doenças das Plantas/microbiologia , Resistência à Doença/genética
11.
Phytopathology ; 113(11): 2127-2133, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36853191

RESUMO

Bacterial leaf streak (BLS) of maize is an emerging foliar disease of maize in the Americas. It is caused by the gram-negative nonvascular bacterium Xanthomonas vasicola pv. vasculorum. There are no chemical controls available for BLS, and thus, host resistance is crucial for managing X. vasicola pv. vasculorum. The objective of this study was to examine the genetic determinants of resistance to X. vasicola pv. vasculorum in maize, as well as the relationship between other defense-related traits and BLS resistance. Specifically, we examined the correlations among BLS severity, severity for three fungal diseases, flg-22 response, hypersensitive response, and auricle color. We conducted quantitative trait locus (QTL) mapping for X. vasicola pv. vasculorum resistance using the maize recombinant inbred line population Z003 (B73 × CML228). We detected three QTLs for BLS resistance. In addition to the disease resistance QTL, we detected a single QTL for auricle color. We observed significant, yet weak, correlations among BLS severity, levels of pattern-triggered immunity response and leaf flecking. These results will be useful for understanding resistance to X. vasicola pv. vasculorum and mitigating the impact of BLS on maize yields.


Assuntos
Xanthomonas , Zea mays , Zea mays/genética , Reconhecimento da Imunidade Inata , Doenças das Plantas/microbiologia , Xanthomonas/genética
12.
New Phytol ; 238(3): 1182-1197, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36721267

RESUMO

Southern leaf blight (SLB), caused by the necrotrophic fungal pathogen Cochliobolus heterostrophus (anamorph Bipolaris maydis), is a major foliar disease which causes significant yield losses in maize worldwide. A major quantitative trait locus, qSLB3.04 , conferring recessive resistance to SLB was previously mapped on maize chromosome 3. Using a combination of map-based cloning, association analysis, ethyl methanesulfonate and transposon mutagenesis, and CRISPR-Cas9 editing, we demonstrate that a leucine-rich repeat receptor-like kinase gene which we have called ChSK1 (Cochliobolus heterostrophus Susceptibility Kinase 1) at qSLB3.04 causes increased susceptibility to SLB. Genes of this type have generally been associated with the defense response. We present evidence that ChSK1 may be associated with suppression of the basal immune response. These findings contribute to our understanding of plant disease susceptibility genes and the potential to use them for engineering durable disease resistance.


Assuntos
Ascomicetos , Zea mays , Zea mays/genética , Zea mays/microbiologia , Leucina , Ascomicetos/fisiologia , Resistência à Doença/genética , Doenças das Plantas/microbiologia
13.
Phytopathology ; 113(7): 1301-1306, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36647182

RESUMO

Target leaf spot (TLS) of sorghum, caused by the necrotrophic fungus Bipolaris cookei, can cause severe yield loss in many parts of the world. We grew B. cookei in liquid culture and observed that the resulting culture filtrate (CF) was differentially toxic when infiltrated into the leaves of a population of 288 diverse sorghum lines. In this population, we found a significant correlation between high CF sensitivity and susceptibility to TLS. This suggests that the toxin produced in culture may play a role in the pathogenicity of B. cookei in the field. We demonstrated that the toxic activity is light sensitive and, surprisingly, insensitive to pronase, suggesting that it is not proteinaceous. We identified the two sorghum genetic loci most associated with the response to CF in this population. Screening seedlings with B. cookei CF could be a useful approach for prescreening germplasm for TLS resistance.


Assuntos
Ascomicetos , Sorghum , Ascomicetos/fisiologia , Sorghum/genética , Sorghum/microbiologia , Doenças das Plantas/microbiologia , Locos de Características Quantitativas
14.
J Integr Plant Biol ; 65(2): 594-610, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36448658

RESUMO

In contrast to large-effect qualitative disease resistance, quantitative disease resistance (QDR) exhibits partial and generally durable resistance and has been extensively utilized in crop breeding. The molecular mechanisms underlying QDR remain largely unknown but considerable progress has been made in this area in recent years. In this review, we summarize the genes that have been associated with plant QDR and their biological functions. Many QDR genes belong to the canonical resistance gene categories with predicted functions in pathogen perception, signal transduction, phytohormone homeostasis, metabolite transport and biosynthesis, and epigenetic regulation. However, other "atypical" QDR genes are predicted to be involved in processes that are not commonly associated with disease resistance, such as vesicle trafficking, molecular chaperones, and others. This diversity of function for QDR genes contrasts with qualitative resistance, which is often based on the actions of nucleotide-binding leucine-rich repeat (NLR) resistance proteins. An understanding of the diversity of QDR mechanisms and of which mechanisms are effective against which classes of pathogens will enable the more effective deployment of QDR to produce more durably resistant, resilient crops.


Assuntos
Resistência à Doença , Epigênese Genética , Resistência à Doença/genética , Melhoramento Vegetal , Produtos Agrícolas/genética , Genes de Plantas , Doenças das Plantas/genética
15.
G3 (Bethesda) ; 12(9)2022 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-35792880

RESUMO

Peas (Pisum sativum) are the second most cultivated pulse crop in the world. They can serve as human food, fodder, and cover crop. The most serious foliar disease of pea cultivars worldwide is Ascochyta blight, which can be caused by several pathogens. Of these, Peyronella pinodes is the most aggressive and prevalent worldwide. Several traits, including resistance to Peyronella pinodes, stem diameter, internode length between nodes 2-3 and 5-6, and area of 7th leaf, were measured in 269 entries of the pea single plant plus collection. The heritability (H2) of the morphological traits was relatively high, while disease resistance had low heritability. Using 53,196 single-nucleotide polymorphism markers to perform a genome-wide association study to identify genomic loci associated with variation in all the traits measured, we identified 27 trait-locus associations, 5 of which were associated with more than 1 trait.


Assuntos
Ascomicetos , Resistência à Doença , Pisum sativum , Doenças das Plantas , Ascomicetos/patogenicidade , Resistência à Doença/genética , Estudo de Associação Genômica Ampla , Pisum sativum/genética , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Estados Unidos , United States Department of Agriculture
16.
Mol Plant ; 15(5): 802-804, 2022 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-35158096
17.
Appl Opt ; 61(33): 9832-9842, 2022 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-36606813

RESUMO

Bidirectionality effects can be a significant confounding factor when measuring hyperspectral reflectance data. The bidirectional reflectance distribution function (BRDF) can effectively characterize the reflectivity of surfaces to correct remote sensing measurements. However, measuring BRDFs can be time-consuming, especially when collecting Mueller matrix BRDF (mmBRDF) measurements of a surface via conventional goniometric techniques. In this paper, we present a system for collecting mmBRDF measurements using static optical fiber detectors that sample the hemisphere surrounding an object. The entrance to each fiber contains a polarization state analyzer configuration, allowing for the simultaneous acquisition of the Stokes vector intensity components at many altitudinal and azimuthal viewing positions. We describe the setup, calibration, and data processing used for this system and present its performance as applied to mmBRDF measurements of a ground glass diffuser.

18.
Front Plant Sci ; 12: 738261, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34630489

RESUMO

Maize is one of the major crops in the world; however, diseases caused by various pathogens seriously affect its yield and quality. The maize Rp1-D21 mutant (mt) caused by the intragenic recombination between two nucleotide-binding, leucine-rich repeat (NLR) proteins, exhibits autoactive hypersensitive response (HR). In this study, we integrated transcriptomic and metabolomic analyses to identify differentially expressed genes (DEGs) and differentially accumulated metabolites (DAMs) in Rp1-D21 mt compared to the wild type (WT). Genes involved in pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) and effector-triggered immunity (ETI) were enriched among the DEGs. The salicylic acid (SA) pathway and the phenylpropanoid biosynthesis pathway were induced at both the transcriptional and metabolic levels. The DAMs identified included lipids, flavones, and phenolic acids, including 2,5-DHBA O-hexoside, the production of which is catalyzed by uridinediphosphate (UDP)-dependent glycosyltransferase (UGT). Four maize UGTs (ZmUGTs) homologous genes were among the DEGs. Functional analysis by transient co-expression in Nicotiana benthamiana showed that ZmUGT9250 and ZmUGT5174, but not ZmUGT9256 and ZmUGT8707, partially suppressed the HR triggered by Rp1-D21 or its N-terminal coiled-coil signaling domain (CCD21). None of the four ZmUGTs interacted physically with CCD21 in yeast two-hybrid or co-immunoprecipitation assays. We discuss the possibility that ZmUGTs might be involved in defense response by regulating SA homeostasis.

19.
Plants (Basel) ; 10(8)2021 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-34451580

RESUMO

Microbe associated molecular pattern (MAMPs) triggered immunity (MTI) is a key component of the plant innate immunity response to microbial recognition. However, most of our current knowledge of MTI comes from model plants (i.e., Arabidopsis thaliana) with comparatively less work done using crop plants. In this work, we studied the MAMP triggered oxidative burst (ROS) and the transcriptional response in two Sorghum bicolor genotypes, BTx623 and SC155-14E. SC155-14E is a line that shows high anthracnose resistance and the line BTx623 is susceptible to anthracnose. Our results revealed a clear variation in gene expression and ROS in response to either flagellin (flg22) or chitin elicitation between the two lines. While the transcriptional response to each MAMP and in each line was unique there was a considerable degree of overlap, and we were able to define a core set of genes associated with the sorghum MAMP transcriptional response. The GO term and KEGG pathway enrichment analysis discovered more immunity and pathogen resistance related DEGs in MAMP treated SC155-14E samples than in BTx623 with the same treatment. The results provide a baseline for future studies to investigate innate immunity pathways in sorghum, including efforts to enhance disease resistance.

20.
Proc Natl Acad Sci U S A ; 118(30)2021 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-34285069

RESUMO

Hybrids account for nearly all commercially planted varieties of maize and many other crop plants because crosses between inbred lines of these species produce first-generation [F1] offspring that greatly outperform their parents. The mechanisms underlying this phenomenon, called heterosis or hybrid vigor, are not well understood despite over a century of intensive research. The leading hypotheses-which focus on quantitative genetic mechanisms (dominance, overdominance, and epistasis) and molecular mechanisms (gene dosage and transcriptional regulation)-have been able to explain some but not all of the observed patterns of heterosis. Abiotic stressors are known to impact the expression of heterosis; however, the potential role of microbes in heterosis has largely been ignored. Here, we show that heterosis of root biomass and other traits in maize is strongly dependent on the belowground microbial environment. We found that, in some cases, inbred lines perform as well by these criteria as their F1 offspring under sterile conditions but that heterosis can be restored by inoculation with a simple community of seven bacterial strains. We observed the same pattern for seedlings inoculated with autoclaved versus live soil slurries in a growth chamber and for plants grown in steamed or fumigated versus untreated soil in the field. In a different field site, however, soil steaming increased rather than decreased heterosis, indicating that the direction of the effect depends on community composition, environment, or both. Together, our results demonstrate an ecological phenomenon whereby soil microbes differentially impact the early growth of inbred and hybrid maize.


Assuntos
Bactérias/metabolismo , Fungos/fisiologia , Vigor Híbrido , Plântula/crescimento & desenvolvimento , Microbiologia do Solo , Zea mays/crescimento & desenvolvimento , Plântula/microbiologia , Zea mays/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA